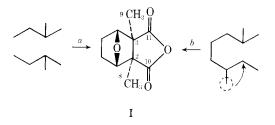
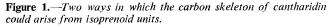
On the Biosynthesis of Cantharidin

H. GUENTHER, E. RAMSTAD, and H. G. FLOSS

Keyphrases Cantharidin—Mylabris biosynthesis Mevalonate, acetate, radioactive—cantharidin biosynthesis Isoprenoids—cantharidin biosynthesis


Schlatter *et al.* (1) recently reported results relating to the biosynthesis of cantharidin (I), the well-known active principle of "Spanish flies" (*Lytta vesicatoria*) and other cantharids. The authors wish to communicate some data which have been obtained in a similar study and which confirm the results of the Swiss group.


METHODS

In 1962, one of the authors (E.R.) had the opportunity to carry out a number of radioactive feeding experiments with "blistering flies" (Mylabris sp.) collected in Taiwan. For each experiment four insects were starved for 4 days and then fed the labeled precursor on small pieces of lettuce which were consumed. After 2 days, the flies were killed by exposure to chloroform vapors, dried in a vacuum over calcium oxide, ground to a powder, and extracted twice with chloroform with shaking for 24 hr. The residue from the filtered extract was washed repeatedly with petroleum ether and then dissolved in chloroform and enough 1 N NaOH to form a creamy mixture into which an excess of a 5% permanganate solution was stirred. After heating for 10 min. on a waterbath, the mixture was acidified with sulfuric acid, excess permanganate was destroyed with ferrous sulfate, and the cantharidin was extracted with chloroform and sublimed in a vacuum. Later, these samples of cantharidin were further purified to constant specific radioactivity by co-crystallization with carrier from chloroform/petroleum ether and from formic acid/water followed by another sublimation. Kuhn-Roth oxidation (2) gave acetic acid from carbon atoms 2, 3, 8, and 9, an aliquot of which was subjected to the Schmidt degradation (2) to give CO₂ (C-2 + C-3) and methylamine (C-8 + C-9). All samples and back-grounds were counted to at least 2% statistical error in a liquid scintillation spectrometer (Beckman LS 100), and counting efficiencies were determined using internal standards.

RESULTS AND DISCUSSION

The structure of cantharidin suggests an isoprenoid origin. Two possible modes of formation are immediately obvious (Fig. 1), one

involving the tail-to-tail condensation of two isoprene units (3) (a) and the other the modification of a molecule of geranyl pyrophosphate, including a 1,2 shift of a methyl group (b). Pathway a requires that acetate-1-14C gives rise to cantharidin carrying 50% of its radioactivity in carbon atoms 2 + 3, whereas according to Pathway b these carbon atoms should contain 25% of the radioactivity. Cantharidin obtained from feeding acetate-1-14C (49 µc., 11.8 μ c./ μ m.) after dilution had a specific activity corresponding to an incorporation of at least 0.007 %. Upon Kuhn-Roth oxidation it gave acetic acid containing 68% of the total radioactivity, which was shown to be labeled only in the carboxyl group (less than 1% of 14C in methylamine). This result clearly rules out Pathway b, and is also not in agreement with Pathway a. If mevalonate-2-14C is fed, carbon atoms 8 + 9 according to Pathway a could carry 0, 50, or 100% of the total radioactivity. A feeding experiment with D,L-mevalonate-2-14C (40 μ c.) gave 0.005% incorporation and the acetic acid representing carbon atoms 2, 3, 8, and 9 of the cantharidin contained 21 % of the radioactivity.

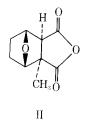


Figure 2.—Desmethylcantharidin, a compound obtained from seeds of Butea frondosa.

The results of this study show that neither of the two hypotheses mentioned above can account for the biosynthesis of cantharidin.¹ They suggest that cantharidin formation may be a more complicated process and seem to even cast some doubt on the mevalonoid origin of this compound. It may be of interest in this connection that a compound isolated from *Butea frondosa* seeds has recently been identified (Fig. 2) as desmethylcantharidin (II) (4).

REFERENCES

(1) C. Schlatter, E. E. Waldner, and H. Schmid, *Experientia*, 24, 994(1968).

(2) H. Simon and H. G. Floss, "Bestimmung der Isotopenverteilung in markierten Verbindungen," Springer-Verlag, Heidelberg, W. Germany 1967, pp. 13 and 26.

(3) E. Ramstad, "Modern Pharmacognosy," McGraw-Hill, New York, N. Y., 1959, p. 148.

(4) R. J. Bochis and M. H. Fisher, Tetrahedron Letters, 1968, 1971.

ACKNOWLEDGMENTS AND ADDRESSES

Received April 4, 1969 from *Department of Medicinal Chemistry* and Pharmacognosy, Purdue University, Lafayette, IN 47907 Accepted for publication April 28, 1969.

Supported in part by U. S. Public Health Service grant No. FR 05586.

 $^{^1}$ An experiment with methionine-methyl- ^{14}C gave no detectable incorporation of ^{14}C into cantharidin.